

Lumped element resonators and **DM Radio**

Kent Irwin, Arran Phipps, Dale Li, Saptarshi Chaudhuri, Peter Graham, Surjeet Rajendran, Jeremy Mardon, Hsiao-Mei Cho, Stephen Kuenstner, Harvey Moseley, Richard Mule, Max Silva-Feaver, Zach Steffen, Betty Young

- Field-like dark matter
- Axions (spin 0) and hidden photons (spin 1)
- Lumped-element resonators (Cabrera & Thomas)
- Hidden-photon detection
- Axion detection
- Resonant enhancement
- DM Radio science reach

Particle-like and field-like dark matter

Heavy Particles

- Number density is small (small occupation)
- Tiny wavelength
- No detector-scale coherence

$$\lambda_{\rm coherence} \approx 100 \, {\rm km} \times (10^{-8} {\rm eV}/m)$$

Look for scattering of individual particles

Light Fields

- Number density is large (must be bosons)
- Long wavelength
- Coherent within detector

 Look for classical, oscillating background field

The light-field dark matter zoo

Light-field dark matter is a boson

- Scalar field (spin-0)
- 2. Pseudoscalar (spin-0, but changes sign under parity inversion) "axion"
- 3. Vector (spin-1): "hidden photon"
- 4. Pseudovector (spin-1, but changes sign on parity inversion)

- Field-like dark matter
- Axions (spin 0) and hidden photons (spin 1)
- Lumped-element resonators (Cabrera & Thomas)
- Hidden-photon detection
- Axion detection
- Resonant enhancement
- DM Radio science reach

Resonant conversion of axions into photons

Pierre Sikivie (1983)

Primakoff Conversion

*High Electron Mobility Transistor

Need to scan frequency

Thanks to John Clarke

"Hidden" photon: generic vector boson

- A new photon, but with a mass, and weak coupling
- Couples to ordinary electromagnetism via kinetic mixing

$$\mathcal{L} \sim -2\varepsilon F^{\mu\nu} F'_{\mu\nu}$$

CMB photon

Hidden Photon DM

Hidden photon DM drives EM currents

Axions: plenty of room at the bottom

Hidden photons: plenty of room at the bottom

- Field-like dark matter
- Axions (spin 0) and hidden photons (spin 1)
- Lumped-element resonators (Cabrera & Thomas)
- Hidden-photon detection
- Axion detection
- Resonant enhancement
- DM Radio science reach

Detecting String-Scale QCD Axion Dark Matter

Blas Cabrera Scott Thomas

<u>Dark Matter Axion Detection</u> – Large f_a/N:

Resonant LC Circuit

$$\omega_0{}^2=\,1\,\,/\,\,LC$$

$$\gamma = R/L = \omega_0/Q$$

B $j(\omega)$ B(ω)

Also, later: Sikivie, P., N. Sullivan, and D. B. Tanner. "*Physical review letters* 112.13 (2014): 131301.

$$\left(-\omega^2 L - i\omega R + \frac{1}{C}\right)q = \mathcal{E}$$

$$I=rac{i\omega\mathcal{E}/L}{\omega_0^2-\omega^2-i\gamma\omega}$$

Also useful for hidden photons:

Arias et al., arxiv:1411.4986

Chaudhuri et al., arxiv: 1411.7382v2

On Resonance

$$U = \frac{1}{2}L|I|^2 = \frac{1}{2}Q^2\frac{M^2}{L}I_a|^2$$

Block EMI background with a superconducting shield

Superconducting shield

Cross-section

- In the subwavelength limit of DM Radio, you can approximate the signal from axions and hidden photons as an effective ac current filling all space, with frequency f = mc²/h
- To detect this signal, we need to block out ordinary photons with a superconducting shield

Hollow, superconducting sheath (like a hollow donut)

- Field-like dark matter
- Axions (spin 0) and hidden photons (spin 1)
- Lumped-element resonators (Cabrera & Thomas)
- Hidden-photon detection
- Axion detection
- Resonant enhancement
- DM Radio science reach

 Hidden photon effective ac current penetrates superconductors

$$\vec{B}_{\rm HP}(t) = |\vec{B}_{\rm HP}(t)| \,\hat{\phi}$$

Meissner Effect

- Hidden photon effective ac current penetrates superconductors
- Generates a REAL circumferential, quasistatic B-field
- Screening currents on superconductor surface flow to cancel field in bulk

- Cut concentric slit at bottom of cylinder
- Screening currents return on outer surface
- Add an inductive loop to couple some of the screening current to SQUID

- Field-like dark matter
- Axions (spin 0) and hidden photons (spin 1)
- Lumped-element resonators (Cabrera & Thomas)
- Hidden-photon detection
- Axion detection
- Resonant enhancement
- DM Radio science reach

Top-Down Cross-section

(B₀ toroid *inside* cylinder)

- Toroidal coil produces DC magnetic field inside superconducting cylinder
- Axions interact with DC field, generates effective AC current along direction of applied field

$$\vec{J}_a = |\vec{J}_a| \,\hat{\phi}$$

- Toroidal coil produces DC magnetic field inside superconducting cylinder
- Axions interact with DC field, generates effective AC current along direction of applied field
- Produces REAL quasi-static
 AC magnetic field

$$\vec{B}_a(t)$$

 Screening currents in superconductor flow to cancel field in bulk

Meissner Effect

- Cut a slit from top to bottom of the superconducting cylinder
- Screening currents continue along outer surface

- Cut a slit from top to bottom of the superconducting cylinder
- Screening currents continue along outer surface
- Use inductive loop to couple screening current to SQUID

- Field-like dark matter
- Axions (spin 0) and hidden photons (spin 1)
- Lumped-element resonators (Cabrera & Thomas)
- Hidden-photon detection
- Axion detection
- Resonant enhancement
- DM Radio science reach

Broadband detection: poor signal to noise

Hidden Photon Detector

Axion Detector

ABRACADABRA
Y. Kahn et al.
arXiv:1602.01086, 2016

- Broadband sensitivity
- Require long integration times for good sensitivity
- Interfering EMI pickup very difficult to manage

Poor signal-to-noise ratio

Resonant enhancement

Hidden Photon Configuration

- Coherent fields can be enhanced through the use of a resonator
- Add a tunable lumpedelement resonator to ring up the magnetic fields sourced by local dark matter
- Tune dark matter radio over frequency span to hunt for signal

Resonant enhancement

Axion Configuration

- Coherent fields can be enhanced through the use of a resonator
- Add a tunable lumpedelement resonator to ring up the magnetic fields sourced by local dark matter
- Tune dark matter radio over frequency span to hunt for signal

- Field-like dark matter
- Axions (spin 0) and hidden photons (spin 1)
- Lumped-element resonators (Cabrera & Thomas)
- Hidden-photon detection
- Axion detection
- Resonant enhancement
- DM Radio science reach

DM Radio science reach: hidden photons (lumped-element)

DM Radio science reach: axions

DM Radio pathfinder experiment

Inserts into Cryoperm-lined helium dewar

9.5 inches

750 mL Pathfinder funded, under construction

- Focus on hidden photons
- T=4K (Helium Dip Probe)
- Frequency/Mass Range:

100 kHz – 10 MHz

500 peV - 50 neV

67 inches

Coupling Range

 ε : 10⁻⁹ – 10⁻¹¹

Readout: DC SQUIDs

Design Overview of the DM Radio Pathfinder Experiment M. Silva, arXiv:1610.09344, 2016

Resonant frequency tuning

$$\frac{\Delta f}{f} pprox 1 imes 10^{-6} \;\; {
m per} \;\; .001" \; {
m of motion}$$

Scan time

- 30 days/decade
- 3-6 months total

Ultra-coarse tuning

- fixed sapphire plate fully inserted/removed (tune C)
- change number of turns in solenoid coil (tune L)

Coarse tuning

position of sapphire dielectric plates (3)

Fine tuning

- position of sapphire needle
- position of niobium needle

Present status - Pathfinder

- Probe construction complete
- Machining of niobium shield/SQUID annex complete, additional niobium parts being machined for scanning
- SQUIDs and readout electronics tested / working
- Now testing fixed resonators to evaluate Q, material properties, then scan
- Initial science constraints Summer 2017

Conclusions

DM Radio:

A Superconducting Lumped-Element Dark Matter Detector For Axions and Hidden Photons

Hidden Photons

<u>Axions</u>

